

Journal of Biomedical and Pharmaceutical Research 2 (1) 2013, 52-59

RESEARCH ARTICLE

Adsorption of Fe (III) Ions by Activated Calcite Powder - Equilibrium, Kinetic and **Thermodynamics Studies**

T. Ravichandran¹, *S. Arivoli²

¹Department of Chemistry, Sri Bharathi Engineering College for Women, Pudukkottai, Tamil Nadu, India. ²Department of Chemistry, Thiru.Vi.Ka. Government Arts College, Thiruvarur-610003, Tamil Nadu, India.

ABSTRACT

The present work investigates the action of Fe (III) ions on Activated calcite powder. The influence of contact time, initial concentration, adsorbent dosage and solution pH has been done and reported. The equilibrium data were analyzed using Langmuir and Freundlich isotherm model. The pseudo – second –order, Elovich model and intra – particle diffusion were used to test the adsorption behavior, kinetic data's. Thermodynamic free energy (ΔG^0), Enthalpy (ΔH^0), and Entropy (ΔS^0) were calculated and the result shows that the adsorption process is physical adsorption.

KEYWORDS: Adsorption isotherm, Activated Calcite Powder (ACP), Iron Solution [Fe (III)], Kinetics, Thermodynamics.

INTRODUCTION:

The natures of the metal ions are nonbiodegradable and it is necessary for the all living grade. A stock solution of Fe (III) ions was prepared organisms, if the intake is above the permissible levels are accurately weighted amount of $[NH_4 Fe(SO_4)_2 \ 12 \ H_2O]$ highly toxic. So the presence of heavy metals in the dissolved in 1000 ml of distilled water. The required environment above the permissible limit leads to severe concentrations of all experimental solution were prepared threat to human life and environment [1]. Large quantities from the stock solution, aliquots containing different of wastewater containing various concentration of iron concentrations viz 25, 50, 75, 100 and 125 mg/L The pH of were generated from many industries such as coating cars, the each experimental solution was adjusted by using 1N aeronautics and steels [2] Iron toxicity lead to many NaoH (or) 1N HCl solution before mixing the adsorbent. problems like anorexia, oliguria, diarrhea, hypothermia, diphasic shock, metabolic acidosis and even death and it **2.3 BATCH ADSORPTION TECHNIQUES:** causes vascular congestion of the gastrointestinal tract, liver, kidneys, heart, brain, adrenals and thymus with fixed amount of 25 mg calcite powder added to 50 ml of acute iron poisoning much of the damage happens to iron solution taken in 250 ml stopper glass flasks. The flasks the gastrointestinal tract and liver which results from the were placed in isothermal shaker with agitation speed 200 high level of iron concentration and free radical production rpm for 90 min at constant temperature when the leading to hepatotoxicity via lipid per oxidation destruction of the hepatic mitochondria. As a result of from the shaker. By centrifugation at 5000 rpm at 10 min iron storage disease, the liver becomes cirrhotic. the adsorbent was separated, the supernatant liquid was Hematoma, a primary cancer of the liver, has become the analyzed for the Fe(III)ions concentrations with the help of most common cause for death among patients with atomic absorption spectrophotometer (perkin Elmer 2380) Hemochromatosis [3].

2 MATERIAL AND METHODS:

2.1 ADSORBENT:

granite quarry. It was washed with tap water and distilled mass of the sorbent $(mg/g), C_0$ and C_e are the liquid phase water several times. Then it was transferred to the oven at concentration of iron (III) ions at initial and final (mg/L) 70°C to dry. The dried calcites were milled sieved and respectively V is the volume of the solution(L), and M is the activated around 400°C then it was used as an adsorbent in mass of dry adsorbent. Percentage removal (R %) was batch adsorption techniques.

2.2 ADSORBATE:

All the reagents used were of analytical

The batch experiments were performed by and equilibrium was attained and the flasks were removed the amount of Fe(III) ions adsorbed at equilibrium, qe (mg/g) can be calculated based on the balance principle

The calcite stone was obtained from a where the q_e is the amounts of Fe(III) ions uptake per unit calculated using the formula;

$$R\% = \frac{c_0 - c_t}{c_0} \times 100 \dots (2)$$

*Corresponding author: S. Arivoli / Email: arivu3636@yahoo.com

3. RESULTS AND DISCUSSION:

3.1. EFFECT OF CONTACT TIMES AND **CONCENTRATION:**

concentration on uptake of Fe(III) solution in different multilayer adsorption of Fe(III) on to activated calcite initial concentrations(25,50,75,100 and 125 mg/L) was powder. agitated with 25 mg of ACP adsorbent. The solution pH was kept constant and the sorption results for iron on ACP 3.5 LANGMUIR ISOTHERM MODEL: at varies initial concentrations are shown in Figure 1. The contact time curve indicate that adsorption was rapid in isotherm model [6] is the first 40 minutes and contact time needed for iron solution to reach the equilibrium was 50 minutes. The results reveal there is no change in the adsorption after 50 minutes at equilibrium levels and the adsorption capacity q_e was found to be 43.78 to170.40 mg/g with an increase in the initial concentration from 25 to 125 mg/L.

3.2. EFFECT OF ADSORBENT DOSAGES:

The effect of the activated calcite powder doses was studied at 30° C to 60° Cby varying the amount of adsorbent dose [25,50,75,100 and 125 mg] for the initial concentration 50 mg/L. Figure 2 reveals that increase in percentage removal of iron with increases in dose of adsorbent due to this increase in adsorbent surface area and the availability of more adsorption sites [4].

3.3. Effect of pH

The solution pH is the most important factor affecting the metal ion adsorption. This is because of the positive ion (ie, hydrogen ions) competing with the positively charged metal ions on the active sites of the adsorbent. The effect of pH on the adsorption of Fe (III) ions on to activated calcite powder has been studied by varying the pH ranges from 2 to 10 as shown in Figure3: The adsorption of Fe (III) ions initially increases up to 6.5 and then suddenly decreases. The optimum adsorption was at pH 6.5. Hence the further experiments were carried out at pH 6.5.

3.4. FREUNDLICH ISOTHERM:

The Freundlich model is based on multilayer adsorption for the heterogeneous surface [5]. The linear form of Freundlich equation is

Where q_e is the amount of Fe (III) ions adsorbed per unit mass of sorbent (mg/g), Ce is the Fe(III) ions concentrations in the solution at equilibrium (mg/g), k_f is measure of adsorption capacity(mg/g), and n is the adsorption intensity. The values of k_f and n are calculated from the

intercepts and slope of the plot of logq_e VS log Ce and the values are given in Table 2. The value of n greater than 1 **INITIAL** represents favorable adsorption condition. The kf and n values indicates Freundlich isotherm was suitable for this To see the effect of contact time and initial adsorption. The kf values also reveals that possibility of

The linear form equation for the Langmuir

where C_e is the equilibrium concentration of metal ions (mg/L), qe is the amount of metal ions adsorbed at equilibrium(mg/g),Q_m is the constant related to the maximum adsorption capacity (mg/g), b is the Langmuir constant related to energy of adsorption (mg/L) .The linear plot of C_e/q_e against equilibrium Concentration(C_e). It is shows that the adsorption obeys the Langmuir model The constants Q₀ and b were determined from slope and intercept and the values of Q_m and b are tabulated in Table 2.

The important characteristics of the Langmuir isotherm model can be described by dimensionless separation factor R₁ [7,8]

$$R_L = \frac{1}{1+b C_0}$$
.....(5)

R₁ values indicates the nature of the adsorption process, if

> $R_1 > 1$ unfavourable $0 < R_1 < 1$ Favourable $R_L = 1$ Linear R_L= 0 Irreversible

R_L values were calculated at four different temperatures such as 30°, 40°, 50° and 60°C were shown in Table.3. The R_{L} data were lies within the range of 0 to 1 which shows the suitability of the Langmuir isotherm of Fe (III) ions on the activated calcite powder.

3.6 THERMODYNAMIC PARAMETERS:

The thermodynamic parameters viz standard Gibbs free energy (ΔG^0), Enthalpy (ΔH^0) and Entropy (ΔS^0) changes can be calculated by using the following equation 6,7,8 [9].

$$\Delta G^0 = -RT \ln K_0 \dots (7)$$

S. Arivoli, Journal of Biomedical and Pharmaceutical Research 2 (1) 2013, 52-59

$$\log K_0 = \frac{\Delta S^0}{2.303R} - \frac{\Delta H^0}{2.303RT}......(8)$$

Where K_0 is the equilibrium constant, R is the universal gas constant, T is the Temperature (K).

The ΔH^0 and ΔS^0 are changes in enthalpy and entropy of adsorption respectively. The enthalpy and entropy values for the iron adsorption can be determined from the plot of In K₀ vs 1/T. Thermodynamic parameter values are obtained from the Eqs. (6),(7) and (8) for iron adsorption on to activated calcite powder. The values are given in Table 4. Here all the ΔG^0 values were negative, this confirm that the feasibility and the spontaneous nature of adsorption process. The all the values of ΔH^0 were positive, indicates that the sorption process was endothermic and physisorption. The all the ΔS^0 values were positive and this graph with a slope of (1/ β) and an intercept of (1/ β) ln ($\alpha\beta$). shows randomness at solid-liquid interface during sorption of iron on activated calcite powder.

3.7 THE PSEUDO SECOND ORDER MODEL:

.....

The linear form of pseudo second order adsorption kinetic equation is given by Ho [10]. It is based on the adsorption capacity of the solid phase.

$$\frac{dq_t}{dt} = K_2(q_e - q_t)$$
.....(9)

where $k_{2 ad}$, is the rate constant of pseudo second order adsorption (gmg.min), q_e is amount of metal ions adsorbed per unit mass of adsorbent at equilibrium (mg.g),qt is amount of metal ions adsorbed at time (t).For the applying the boundary conditions, the integrated model of equation (8) becomes;

$$(q_e - q_t) = \frac{1}{2} + K_2 t$$
 (10)

The initial adsorption rate h (mg/g.min), at t=0 can be defined as:

h =
$$K_2 q_e^2$$
(11)

The q_e and K_2 can be determined from the slope and intercept of the plot of t/q_t and time (t) respectively. The kinetic parameter and correlation coefficient values were summarized in Table 5. The correlation co-efficient values (y) for the pseudo-second-order was greater than 0.9900(i.e γ > 0.9900) and also the calculated q_e values are good agreement with experimental qe values suggested that the Fe(III) ions on to ACP follows pseudo-second-order model.

3.8. THE ELOVICH EQUATION:

The rate of Elovich model equation is generally expressed as [11,12],

$$\frac{iq_t}{dt} = \alpha \exp\left(-\beta q_t\right)....(12)$$

Where α is the initial adsorption (mg/g/min), β is the adsorption constant (g/mg) during any one experiment. To simply the Elovich equation, by assuming $\alpha \beta t >> T$ and by applying the boundary conditions $q_t = 0$ at t=0 and $q_t = q_t$ at t=t equation (12) becomes

A plot of q_t vs ln (t) should yield a linear From the slope and intercept values the α , β and γ were calculated and shown in Table 5. The correlation coefficient (γ) were greater than 0.9900 (i.e. γ > 0.9900) suggested that Elovich model can also suitable for the Fe(III) ions adsorption on to ACP.

The obtained pseudo second order high correlation value suggests the adsorption of Iron(III) follows second ² order kinetics.

3.9 INTRA- PARTICLE DIFFUSION MODEL:

. . .

The intra-particle diffusion model is the most commonly used to explains the mechanism of the adsorption process [13]

$$q_t = K_{id} t^{1/2} + C$$
(14)

where q_t is the amount of Fe(III) ions adsorbed % f(t)=0 at time "t" (mg.g⁻¹), K_{id} is the intra-particle diffusion rate constant (t⁻ $^{1/2}$), t is the time in minutes and **C** is the constant (ie, equal to intercept of the line (mg.g⁻¹). The K_{id}, I and γ values were calculated from the plot of q_t vs $t^{1/2}$. These values were given in table 5. The slope of the plot shows two separate regions in the curve, the first part of curved portion reflect the film (or) boundary layer diffusion effect while the final linear portion represents intra-particle diffusion effect. The diffusion rate parameters are summarized in Table .5. The data indicates that, the present system may be followed by intra-particle diffusion mechanism. Since plot is not passing through the origin, suggested that some other mechanism also involved in the adsorption process.

S. Arivoli, Journal of Biomedical and Pharmaceutical Research 2 (1) 2013, 52-59

	Ce (Mg / L)				Q ₀ (Mg / g)				R (%)			
Ci												
	30° C	40° C	50° C	60° C	30° C	40° C	50° C	60° C	30° C	40° C	50° C	60° C
25	3.1705	2.8640	2.6560	2.5270	43.785	44.272	44.688	44.946	87.57	88.544	89.376	89.892
50	10.7935	9.7625	8.3735	7.3780	78.413	80.475	83.253	85.244	78.413	80.475	83.253	85.244
75	23.4245	21.1270	18.9205	16.9720	103.151	107.746	112.159	116.056	68.7673	71.8306	74.7726	77.3706
100	45.7730	42.8605	18.9205	36.7620	108.454	114.279	162.159	126.476	54.227	57.1395	81.0795	63.238
125	74.9725	71.2860	39.7995	64.2175	100.055	107.428	170.401	121.565	40.022	42.9712	68.1604	48.626

Table 1. Equilibrium parameters for adsorption of fe (iii) onto activate calcite adsorbent

Table 2. Langmuir and freundlich isotherm parameter for adsorption of fe (iii) ions onto activated calcite adsorbent

Temperature ∘C	Langmuir pa	arameter	Fruendlich parameter			
	Q ₀	В	K _f	n		
30°	107.0011	0.3600	4.7783	3.6450		
40°	115.1532	0.3184	4.8276	3.4729		
50°	220.1746	0.0822	4.2458	1.9423		
60°	130.7443	0.29412	4.9666	3.225		

Table 3. Dimensionless seperation factor (rl)

Initial Concentration(C _i)	Temperature °c							
	30°C	40°C	50°C	60°C				
25	0.0999	0.1115	0.3272	0.1197				
50	0.0526	0.05909	0.1956	0.0636				
75	0.0357	0.0401	0.1395	0.0433				
100	0.0270	0.0304	0.1084	0.0328				

S. Arivoli, Journal of Biomedical and Pharmaceutical Research 2 (1) 2013, 52-59

C.		۸H°	٨s٥				
C,	30° C	40° C	50° C	60° C			
25	- 4918.185	- 5321.63	- 5719.242	- 6050.088	6.5891	38.0234	
50	- 3249.437	- 3685.484	- 4306.517	- 4855.692	13.2275	54.2510	
75	- 1988.269	- 2435.938	- 2917.776	- 3403.561	12.3323	47.2286	
100	- 426.9556	- 748.2732	- 3907.784	- 1501.781	19.6977	67.1212	
125	1019.115	736.5142	- 2044.017	152.1985	18.0271	56.7981	

Table 4. Thermodynamic parameter for the adsorption of fe (iii) ions on

Table 5. The Kinetic Parameter For Adsorption Of Fe (lii) Ions On Acp Adsorbent

C _i	Temp °C	PS	EUDO SECO	ND ORDER		ELOVICH MODEL			INTRAPARTICLE DIFFUSION		
		q _e	K _{2ad}	γ	н	α	β	γ	K _{id}	γ	I
25	30	50.9614	0.00174	0.9962	4.5114	17.3146	0.1107	0.9921	1.4974	0.9912	0.2460
	40	50.9096	0.00186	0.9963	4.8206	21.5532	0.1159	0.9924	1.5287	0.9914	0.2303
	50	52.8285	0.00201	0.9961	5.1921	27.3078	0.1213	0.9930	1.5579	0.9915	0.2160
	60	51.2191	0.00197	0.9960	5.1901	26.3776	0.1193	0.9915	1.5563	0.9917	0.2186
50	30	92.1793	0.00088	0.9964	7.5104	25.4943	0.0588	0.9940	1.4196	0.9918	0.2620
	40	93.9490	0.00090	0.9951	7.9499	29.6329	0.5950	0.9923	1.45023	0.9919	0.2505
	50	95.9066	0.00098	0.9952	8.9849	38.4464	0.0608	0.9928	1.4953	0.9921	0.2343
	60	98.2485	0.00096	0.9953	9.3534	39.7898	0.0592	0.9927	1.5073	0.9923	0.2344
	30	126.2178	0.00051	0.9942	8.2023	22.09413	0.03950	0.9926	1.2848	0.9925	0.3052
75	40	129.093	0.00056	0.9951	9.4039	27.9733	0.0401	0.9933	1.3427	0.9928	0.2837
/5	50	133.0713	0.0006	0.9956	10.6239	34.5720	0.0402	0.9935	1.3917	0.9938	0.2677
	60	135.8842	0.00049	0.9944	9.1152	38.5393	0.0429	0.9936	1.4176	0.9945	0.2444
	30	149.2845	0.00026	0.9941	5.9354	12.3041	0.0294	0.9939	0.9755	0.9961	0.4208
100	40	151.3299	0.0003	0.9944	6.881	14.9301	0.02980	0.9940	1.0595	0.9967	0.3856
100	50	155.0632	0.00033	0.9922	7.9071	17.9935	0.0298	0.9941	1.1295	0.9969	0.3594
	60	157.778	0.00038	0.9932	9.5210	23.4261	0.0304	0.9943	1.2122	0.9968	0.3271
	30	195.2934	0.0001	0.9933	3.2151	6.8818	0.0241	0.9937	0.4582	0.9977	0.6382
175	40	189.0269	0.00010	0.9935	3.8320	7.9401	0.0237	0.9928	0.5767	0.9975	0.5876
123	50	195.5088	0.00011	0.9936	4.2408	8.73306	0.0227	0.9920	0.6400	0.9974	0.5671
	60	185.0294	0.00016	0.9939	5.3636	10.7540	0.0232	0.9919	0.7822	0.9978	0.5026

Page 56

Fig;2- Effect of Adsorbent dose on the removal of Fe(III)ion onto ACP [Fe(III)]=50mg/L; Conact time=50min; Adsorbent dose=25mg/50ml;Temp=30^oC

Fig;3- Effect of Initial pH on the removal of Fe(III) onto ACP [Fe(III)]=50mg/L; Conact time=50min; Adsorbent dose=25mg/50ml;Temp=30^oC

CONCLUSION:

The present study proved that activated calcite **3.** powder is a good adsorbent for Fe (III) ions from aqueous solution. The kinetics of adsorption follows pseudo – **4.** second –order, Elovich and intra- particle diffusion model. The adsorption follows both Freundlich and Langmuir models. Thermodynamically parameters indicate that the adsorption was a physisorption process. **5.**

ACKNOWLEDGEMENT:

The authors sincerely thank the University Grant Commission New Delhi for providing the fund from Major Research Project.

REFERENCE:

- Sigel H, (Ed), Metal ions in biological System, Dekker, New York, 1988, p.24.
- Selatnia, A. Boukazoula, N. Kechid, M.Z. Bakhti and A. Chergui, Biosorption of Fe(III) from aqueous solution by a bacterial dead Streptomyces Rimousus biomass.

Process Biochem., 39 (2004) 1643–1651

- Lauffer R., Iron and Human diseases (London: CRC Press), 1992
- 4. Mall D I,Srivastha V C and Agarwal N K, Removal of organic-G and methyl violet dyes by adsorption on to bagasse fly ash kinetic study and equilibrium isotherm analysis, Dyes and pigments: 69 (2006) 210-22
- 5. Freundlich,H, .M.F. Dye adsorption in solution., Z. Phys..Chem., A57, (1906), 385.
- Langmuir I, The adsorption of gases on plane surfaces of glass, mica and platinum J.Am. Chem.Soc, ,40(9) (1918) 1391,
- Weber T W, Chakravorti R.K, Pore and Solid diffusion models for fixed bed adsorbers., J. Am. Inst. Chem. Eng.20 (1974) 228
- McKay, Blair H S, Gardner J. R Adsorption of dyes on chitin J. Appl. Polym. Sci. 27 (1982) 3043 – 3057.
- Namasivayam C. and Kavitha D ,Removal of Congo-red from water by adsorption onto carbon prepared from coir pith an agricultural solid waste, Dyes Pigments, 54, (2002),47–58.

Page**J**

- metal ions onto sphagnum moss peat, Water Research, 2000, 34,735-742
- 11. Chien S.H. Clayton W. R., Application of elovich 13. Weber W J, Morris J.C, Sanit, J. equation to the kinetics of phosphate release and sorption on soils, Soil Science Soceity America Journal, 1980, 44, 265-268.
- 10. Ho Y. S. McKay G., The kinetic of sorption of divalent 12. Spark D.L Kinetics of Reaction in pure and mixed system in soil physical chemistry. (1986) CRC. Press , Boca Raton
 - Equilibria and capacities for adsorption on carbon Eng. Div. Am. Soc. Civ. Eng., 89, (1963).