

Journal of Biomedical and Pharmaceutical Research 1 (3) 2012, 01-05

SHORT COMMUNICATION

Biological and Clinical Spectrum of Piceatannol – A Hydroxylated Analogue of Resveratrol: A Phytochemical Review.

*Satyanand Tyagi¹, Patel Chirag J², Raghvendra³

¹President, Tyagi Pharmacy Association & Scientific Writer (Pharmacy), Chattarpur, New Delhi, India-110074. ²Department of Pharmaceutics, Maharishi Arvind Institute of Pharmacy, Mansarovar, Jaipur, Rajasthan, India-302020. ³Department of Pharmaceutics, Aligarh College of Pharmacy, Aligarh, U.P, India-202001.

*Prof. Satyanand Tyagi is a life time member of various pharmacy professional bodies like IPA, APTI and IPGA. He has published various research papers, review articles and short communications. His academic work includes 55 Publications (45 Review Articles, 08 Research Articles and 02 short communications of Pharmaceutical, Medicinal and Clinical Importance, published in standard and reputed National and International Pharmacy Journals; Out of 55 publications, 11 are International Publications). He has published his papers almost in different specialization of Pharmacy fields. His research topics of interest are neurodegenerative disorders, diabetes mellitus, cancer, rare genetic disorders, psycho-pharmacological agents as well as epilepsy.

ABSTRACT

Resveratrol (3, 4', 5-trans-trihydroxystilbene), a naturally occurring stilbene, is considered to have a number of beneficial effects, including anticancer, anti-aethrogenic, anti-oxidative, anti-inflammatory, anti-microbial and estrogenic activity. Piceatannol (3, 3', 4, 5'-trans-trihydroxystilbene), a naturally occurring hydroxylated analogue of resveratrol, is less studied than resveratrol but displays a wide spectrum of biological activity. Piceatannol has been found in various plants, including grapes, passion fruit, white tea, and Japanese knotweed. Besides antioxidative effects, piceatannol exhibits potential anticancer properties as suggested by its ability to suppress proliferation of a wide variety of tumor cells, including leukemia, lymphoma; cancers of the breast, prostate, colon and melanoma. Although piceatannol has been shown to induce apoptosis in cancer cells, there are examples of its anti-apoptotic pro-proliferative activity. Piceatannol inhibits Syk kinase, which plays a crucial role in the coordination of immune recognition receptors and orchestrates multiple downstream signaling pathways in various haematopoietic cells. Piceatannol also binds estrogen receptors and stimulates growth of estrogen-dependent cancer cells. The pharmacological properties of piceatannol, especially its antitumor, antioxidant, and antiinflammatory activities, suggest that piceatannol might be a potentially useful nutritional and pharmacological biomolecule; however, more data are needed on its bioavailability and toxicity in humans. The aim of present article is to provide in depth knowledge about clinical and biological activity of Piceatannol. An attempt is also made to focus on various health effects of Piceatannol and brief description of Piceatannol.

KEY WORDS: Resveratrol, Piceatannol, 3, 3', 4, 5'-Trans-trihydroxystilbene, Astringinin.

INTRODUCTION:

Piceatannol is a stilbenoid, a type of phenolic compound. Piceatannol and its glucoside, isorhapontin are phenolic compounds found in mycorrhizal and non-mycorrhizal roots of Norway spruces (*Picea abies*) [1]. It is a metabolite of resveratrol found in red wine. Astringin, a piceatannol glucoside, is also in red wine. LMP2A, a viral protein-tyrosine kinase implicated in leukemia, non-Hodgkin's lymphoma and other diseases associated with Epstein-Barr virus (EBV), were found in a 1989 study to be blocked by piceatannol *in vitro* [2]. In 2003, this prompted research interest in piceatannol as an anticancer and anti-EBV drug [3]. Chemically it may be named

as 5-[(E)-2-(3'-dihydroxyphenyl) vinyl] benzene-1, 3-diol or 3', 4', 3, 5-tetrahydroxy-trans-stilbene. As seen in the structure, chemically Piceatannol is hydroxylated analogue of resveratrol (Fig.1. & Fig.2.). Injected in rats, piceatannol shows a rapid glucuronidation and a poor bioavailability, according to a 2006 study [4]. A 2012 Purdue University study found that fat cells in culture, in the presence of piceatannol, alters the timing of gene expressions, gene functions and insulin action, resulting the delay or complete inhibition of adipogenesis [5]. The study suggests piceatannol has the potential to control obesity. A compound found in red wine, grapes and other fruits, and similar in structure to resveratrol, is able to block cellular processes that allow fat cells to develop,

Satyanand Tyagi, Journal of Biomedical and Pharmaceutical Research 1 (3) 2012, 01-05

according to a Purdue University study. Kee-Hong Kim, an adipogenesis is an important molecular target to delay or assistant professor of food science, and Jung Yeon Kwon, a prevent fat cell accumulation and, hopefully, body fat mass graduate student in Kim's laboratory, reported in this gain." Kim found that piceatannol binds to insulin receptors week's issue of the Journal of Biological Chemistry that the of immature fat cells in the first stage of adipogenesis, compound piceatannol blocks an immature fat cell's ability blocking insulin's ability to control cell cycles and to develop and grow. While similar in structure to activate genes that carry out further stages of fat cell resveratrol the compound found in red wine, grapes and formation. Piceatannol essentially blocks the pathways peanuts that is thought to combat cancer, heart disease necessary for immature fat cells to mature and grow. and neurodegenerative diseases piceatannol might be an Piceatannol is one of several compounds being studied in important weapon against obesity. Resveratrol is Kim's laboratory for its health benefits, and it is also converted to piceatannol in humans after consumption. present in different amounts in red grape seeds and skin, "Piceatannol actually alters the timing of gene expressions, blueberries, passion fruit, and other fruits. Kim would like gene functions and insulin action during adipogenesis, the to confirm his current finding, which is based on a cell process in which early stage fat cells become mature fat culture system, using an animal model of obesity. His cells," Kim said. "In the presence of piceatannol, you can future work would also include determining methods for see delay or complete inhibition of adipogenesis." Over a protecting period of 10 days or more, immature fat cells, called concentrations large enough would be available in the preadipocytes, go through several stages to become bloodstream to stop adipogenesis or body fat gain [6]. mature fat cells, or adipocytes. "These precursor cells, ev1. "We need to work on improving the stability and solubility though they have not accumulated lipids, have t

opening a door to a potential method to control obesity, potential to become fat cells," Kim said. "We consider that piceatannol from degrading so that

of piceatannol to create a biological effect," Kim said [7].

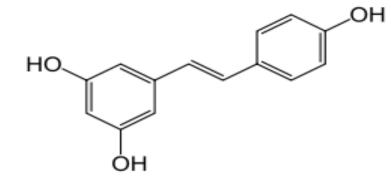
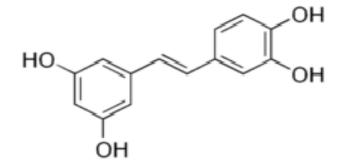



Fig.1. Structure of Resveratrol

Page Z

Fig.1.A. Structure of Piceatannol

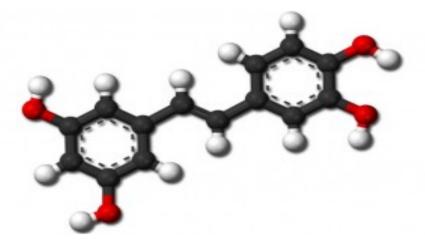


Fig.1.B. Piceatannol Molecule

BIOLOGICAL, PHARMACOLOGICAL AND **CLINICAL** Resveratrol (3, 4', 5-trans-trihydroxystilbene), a **SPECTRUM OF PICEATANNOL:** naturally occurring stilbene, is considered to have a number of beneficial effects, including anticancer, anti- non-receptor Syk tyrosine kinase [12], which plays a critical aethrogenic, microbial and estrogenic activity. Piceatannol (3, 3', 4, 5'- responses of hematopoietic cells [13, 14], and in trans-trihydroxystilbene), а naturally hydroxylated analogue of resveratrol, is less studied than the general physiological functions in a wide variety of nonresveratrol but displays a wide spectrum of biological hematopoietic cells [16]. It was found that piceatannol activity. Piceatannol has been found in various plants, possesses multiple bioactivities such as anti-cancer [17-19], including grapes, passion fruit, white tea, and Japanese anti-Epstein-Barr virus [20], and cardio knotweed. Besides antioxidative effects, piceatannol associated with exhibits potential anticancer properties as suggested by its reperfusion injury in rat hearts ability to suppress proliferation of a wide variety of tumor is present in low quantity in grapes [24], peanuts [25], cells, including leukemia, lymphoma; cancers of the breast, Euphorbia lagascae [26] and Vaccinium berries [27]. prostate, colon and melanoma. The growth-inhibitory and Like Resveratrol, Piceatannol it is a phytoalexin. proapoptotic effects of piceatannol are mediated through Piceatannol shows many biological activities. It has known cell-cycle arrest; up regulation of Bid, Bax. Bik, Bok, Fas: anticancer and antileukaemic properties, P21 (WAF1) down-regulation of Bcl-xL; BCL-2, clAP, apoptosis in several cell lines and animal models; it inhibits activation of caspases (-3, -7, -8, -9), loss of mitochondrial a variety of tyrosinase kinases involved in cell proliferation. potential, and release of cytochrome c. Piceatannol has A recent study has demonstrated that the cancer been shown to suppress the activation of some preventative properties of resveratrol are related to its transcription factors, including NF-kappaB, which plays a natural conversion into metabolite piceatannol in living central role as a transcriptional regulator in response to cells by the enzyme CYP1B1 (belongs to the cytochrome cellular stress caused by free radicals, ultraviolet P450 enzyme family) that is over-expressed in a wide irradiation, cytokines, or microbial antigens. Piceatannol variety of human tumours. Other experimental evidences also inhibits JAK-1, which is a key member of the STAT showed that piceatannol has a higher level of antioxidant pathway that is crucial in controlling cellular activities in activity compared to resveratrol. This result is according to response to extra cellular cytokines and is a COX-2- the evidence that a catechol moiety present in a compound enzyme inducible carcinogenesis. Although piceatannol has been shown to induce apoptosis in cancer cells, there are examples of its **CONCLUSION**: anti-apoptotic pro-proliferative activity. Piceatannol inhibits Syk kinase, which plays a crucial role in the have attracted the attention of many researchers due to coordination of immune recognition receptors and their wide range of positive biological effects. One of the orchestrates multiple downstream signaling pathways in most relevant and extensively Polyphenolic antioxidants of various hematopoietic cells. Piceatannol also binds red wine, including resveratrol and piceatannol, are estrogen receptors and stimulates growth of estrogen- thought to be responsible for the cardiovascular benefits dependent cancer cells. Piceatannol is rapidly metabolized associated with moderate wine consumption. Piceatannol in the liver and is converted mainly to a glucuronide was more potent than resveratrol in cardiac ion channel conjugate; however, sulfation is also possible, based on in inhibition which was also in parallel with its potent vitro studies. The pharmacological property of piceatannol, antiarrhythmic efficacy in ischaemia-reperfused rat hearts. especially its antitumor, antioxidant, and anti-inflammatory Piceatannol-mediated modulation on cardiac sodium activities, suggests that piceatannol might be a potentially channel may contribute to its antiarrhythmic action at useful nutritional and pharmacological biomolecule; concentrations less than 10 μ mol·L⁻¹. Piceatannol is a however, more data are needed on its bioavailability and metabolite that occurs in the plant Euphorbia lagascae. It toxicity in humans [8, 9].

OTHER CLINICAL ACTIONS:

a polyphenolic stilbene phytochemical which is rich in the including piceatannol, has been published. Picetannol has seeds of Euphorbia lagascae [10] and is also present in been shown to interfere with the cytokine signaling diets of plant-derived foods and beverage such as red wine pathway, notably in the inhibition of the Syk nonreceptor [11]. Piceatannol was identified as a selective inhibitor of kinases. Picetannol has been shown to interfere with the

anti-oxidative, anti-inflammatory, anti- role in the regulation of immune and inflammatory occurring maintaining vascular integrity [15] in addition to playing protection antiarrhythmia against ischaemia-[21-23]. Piceatannol

inducing involved in inflammation and increases the cytotoxic and antioxidant activity in vitro.

In the last few years, stilbene-based compounds is a tetrahydroxystilbene and an analog of resveratrol that has been investigated for its potential antioxidant activities. A report on the cell and enzyme based in vitro Piceatannol (3, 3', 4', 5-tetrahydroxystilbene, astringinin) is screening of potential cancer chemo preventive agents,

antigen presenting capacity of interferony treated mouse 10. Inamori Y, Kato Y, Kubo M, Yasuda M, Baba K, Kozawa mast cells. It also inhibits the activation of NFkB in human cultured cells, after treatment of with various inflammatory agents, through inhibition of IkBa kinase and p65 phosphorylation.

ACKNOWLEDGEMENT:

The corresponding author, Prof. Satyanand Tyagi is highly thankful to his Parents, Teachers, wife Pooja, and daughter Tanisha for their moral support and encouragement. Last but not the least, support of all my 12. Oliver JM, Burg DL, Wilson BS, McLaughlin JL, Geahlen students and the one above all of us, the omnipresent God, for answering my prayers for giving me the strength to plod on despite my constitution wanting to give up and throw in the towel, thank you so much Dear Lord.

REFERENCES:

- Babette Münzenberger, Jürgen Heilemann, Dieter 1. Strack, Ingrid Kottke, Franz Oberwinkler, Phenolics of mycorrhizas and non-mycorrhizal roots of Norway 14. spruce, Planta, 1989, 182(1), 142-148.
- Geahlen RL, McLaughlin JL, "Piceatannol (3, 4, 3', 5'-2. Tetrahydroxy-Trans-stilbene) is a naturally occurring **15**. protein-tyrosine kinase inhibitor", Biochem. Biophys. Res. Commun, 1989, 165(1): 241-5.
- Swanson-Mungerson M, Ikeda M, Lev L, Longnecker R, 3. (LMP2A) specific targets for treatment and eradication of Epstein-Barr virus (EBV)-associated diseases", J. Antimicrob. Chemother, 2003, 52 (2), 152-4.
- 4. M. Davies, Pharmacokinetics of selected stilbenes: rhapontigenin, piceatannol and pinosylvin in rats, Journal of Pharmacy and Pharmacology, 2006, 58 (11), 1443-1450.
- 5. Compound Could Help Block Fat Cell Formation". Journal of Biological Chemistry. Science Daily. April 4, 2012. Retrieved 2012-04-05.
- http://www.newsmedical.net/news/20120405/Piceat 6. annol-blocks-preadipocytese28099-ability-to-developand-grow.aspx
- http://www.news-medical.net/news/20120405 7. /Piceatannol-blocks-preadipocytese28099-ability-todevelop-and-grow.aspx?page=2
- http://www.ncbi.nlm.nih.gov/pubmed/22108298 8.
- 9. Piotrowska H, Kucinska M, Murias M, Biological activity of piceatannol: leaving the shadow of resveratrol, Mutat Res, 2012, 750(1), 60-82.

- Physiological activities,5' of Μ. 3,3 tetrahydroxystilbene isolated from the heartwood of Cassia garrettiana CRAIB. Chem Pharm Bull. 1984; 32(1):213-218.
- 11. Waffo Teguo P, Fauconneau B, Deffieux G, Huguet F, Vercauteren J, Merillon JM. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from vitis vinifera cell cultures. J Nat Prod. 1998; 61(5):655-657
- RL. Inhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J Biol Chem.1994: 269(47):29697-29703
- 13. Peters JD, Furlong MT, Asai DJ, Harrison ML, Geahlen RL. Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates alpha-tubulin on tyrosine. J Biol Chem. 1996; 271(9):4755-4762.
- Sada K, Takano T, Yanagi S, Yamamura H. Structure and function of Syk protein-tyrosine kinase. J Biochem. 2001; 130(2):177-186
- Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science.2003; 299(5604):247-251.
- Portis T, "Identification of latent membrane protein 2A 16. Yanagi S, Inatome R, Takano T, Yamamura H. Syk expression and novel function in a wide variety of tissues. Biochem Biophys Res Commun. 2001; 288(3):495-498.
- Kathryn A. Roupe, Jaime A. Yáñez, Xiao Wei Teng, Neal 17. Ferrigni NR, McLaughlin JL, Powell RG, Smith CR., Jr Use of potato disc and brine shrimp bioassays to detect activity and isolate piceatannol as the antileukemic principle from the seeds of Euphorbia lagascae. J Nat Prod. 1984; 47(2):347-352.
- "Potential Method to Control Obesity: Red Wine, Fruit 18. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer. 2002; 86(5):774-778.
 - 19. Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, et al. Targeting signal-transducerand-activator-of- transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci. 2006; 1091:151-169.
 - 20. Cooper L, Longnecker R. Inhibition of host kinase activity altered by the LMP2A signalosome-a therapeutic target for Epstein-Barr virus latency and associated disease. Antiviral Res.2002; 56(3):219-231

- 21. Hung LM, Chen JK, Lee RS, Liang HC, Su MJ. Beneficial effects of astringinin, a resveratrol analogue, on the Radic Biol Med.2001; 30(8):877-883.
- 22. Wen-Pin Chen, Li-Man Hung, Chia-Hsiang Hsueh, Ling-Ping Lai, Ming-Jai Su, Piceatannol, a derivative of exerts antiarrhythmic action in ischaemia-reperfused rat hearts, Br J Pharmacol, 2009, 157(3): 381-389.
- 23. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC27079 85/
- 24. Bavaresco, L.; Fregoni, M.; Trevisan, M.; Mattivi, F.; Vrhovsek, U.; Flachetti, R. The occurrenceof the

stilbene piceatannol in grapes. Vitis 2002, 41, 133-136.

- ischemia and reperfusion damage in rat heart. Free 25. Ku, K.L.; Chang, P.S.; Cheng, Y.C.; Lien, C.Y. Production of stilbenoids from the callus of Arachis hypogaea: A novel source of the anticancer compound piceatannol. J. Agr. Food Chem. 2005, 53, 3877–3881.
- resveratrol, moderately slows I_{Na} inactivation and **26.** Ferrigni, N.R.; Mclaughlin, J.L.; Powell, R.G.; Smith, C.R. Isolation of piceatannol as the antileukaemic principle from the seeds of Euphorbia lagascae. J. Nat. Prod. 1984, 47, 347-352.
 - 27. Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J. Resveratrol, pterostilbene and piceatannol in Vaccinium berries. J. Agr. Food Chem. 2004, 52, 4713-4719.