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ABSTRACT:  
Dihydromyricetin (DMY) has a protective effect on neural function under central nervous system dysfunction conditions. 
There is growing interest concerning the beneficial effects of DMY on treating diabetic neuropathy (DN). This study was 
carried to detect protective effects of DMY on high glucose (HG)-induced cell damage and related mechanisms. The 
effect of DMY on cell survival was detected by MTT assay. Caspase-3 and phosphorylated AMP-activated protein kinase 
(AMPK) was evaluated by Western blotting. The effects of DMY and AMPK agonist AICAR on ROS production was 
determined. Our results showed that DMY treatment protect against HG-induced cell damage. DMY treatment 
significantly reduced the expression of caspase-3 and phosphorylated AMPK. ROS production was inhibited by DMY or 
AMPK agonist AICAR treatment. These studies demonstrate that DMY may inhibit ROS production, caspase-3 expression 
through AMPK pathway. 
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Introduction 

Diabetes mellitus is a major cause of high morbidity 
and mortality in the world. Diabetic neuropathy 
(DN) is one of the most common diabetes-related 
complications leading to cognitive impairment, 
motor and sensory dysfunction[1]. The importance 
of DN is being recognized increasingly. Oxidative 
stress, impaired cerebral insulin signaling systems 
are considered as being closely related to DN 
development[2]. Many evidence have reported that 
overproduction of reactive oxygen species (ROS) 
contributed to neural cell apoptosis and inhibition 
of oxidation may block the progression of DN[3]. 

Dihydromyricetin (DMY), a flavonoid compound, 
was isolated from the leaves of Ampelopsis 
grossedentata[4]. It has been reported to possess 
multiple pharmacological activities including anti-
inflammatory[5], anti-oxidative[6], anticancer[7] and 
hepatoprotective effects[8]. Recent data supported 
dihydromyricetin attenuated methylglyoxal 
induced- oxidative stress in PC12 cells[9]. 

Dihydromyricetin treatment can improve Aβ 
induced cognitive impairment and reverse 
progressive neuropathology in a mouse model of 
Alzheimer’s disease[10]. However, the effects of 
DMY on hyperglycemia neural injury and related 
mechanisms have not been clearly studied. 

The aim of the present study was to investigate the 
protective effects of DMY on high glucose-induced 
cell damage in cultured PC12 cells. We further 
examined whether DMY can affect high glucose-
induced caspase-3 expression, ROS production and 
AMPK phosphonylation. 

Materials and Methods 

Reagents 

Dihydromyricetin (purity ≥ 98%) was purchased 
from Sigma-Aldrich. ROS production was measured 
by using a ROS assay kit (Nanjing Jiancheng 
Bioengineering Institute, China). Antibodies against 
phospho-AMPK, cleaved caspase 3 was purchased 
from Boster Bio Tech (Wuhan, China). Antibodies 
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against GAPDH were obtained from Beyotime, 
Nanjing, China. 

Cell Culture 

PC12 cells were cultured in DMEM medium 
containing 10% fetal bovine serum under 
conditions of 37 °C in humidified air containing 5% 
CO2. The cultured medium was changed every 48 
hours and the cells in the exponential phase of 
growth were used in all experiments. 

Cell viability detection 

Cell viability was evaluated by a modified 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) detection assay. PC12 cells were 
seeded in 96-well plates. Cells were pretreated 
with different conditions of Dihydromyricetin (10, 
20, 40 μM) for 1 h and treated with high glucose 
with concentration of 100 mM for 48 h. MTT (5 
mg/mL) was added to each well, and the cells were 
incubated for 4 h at incubator of 37 °C. The 
medium was removed and dimethyl sulfoxide 
(DMSO) was added to the wells. The absorbance 
was measured at 570 nm using multiscan 
spectrum. Cell viability was expressed normalized 
to percentage of non-treated control cells. 

Intracellular ROS detection assay 

Intracellular ROS production was evaluated by 2,7-
dichlorofluorescin diacetate (DCFH-DA) fluorescent 
probe detection assay. PC12 cells were seeded in 
24-well plates and pretreated with DMY 20 μM for 
1 h or AICAR 10 nM and exposed to 100 mM of HG 
for 48 h. The medium was removed and incubated 
with 20 μmol/L of DCFH-DA for 30 min at 37 °C, 
then cells were washed with PBS to remove DCFH-
DA. Cells were collected and analyzed immediately 
using a microplate reader. 

Western Blot Analysis 

PC12 cells were harvested and washed with ice-
cold PBS, and the cellular lysates were prepared. 
Protein concentrations were determined by BCA 
assay. The protein samples were subjected to 
electrophoresis on 10-12% SDS polyacrylamide gels 
and transferred onto a nitrocellulose membrane. 
Then the membrane was blocked with 7.5% nonfat 
milk, and incubated with anti-cleaved caspase 3, 
anti- phospho-AMPK and anti-GAPDH antibodies 
overnight.  

Then the blots were incubated with anti-rabbit 
IRDye700DX®-conjugated antibody or anti-mouse 
IRDye800DX®-conjugated antibody. The signals 
were scanned by an Odyssey infrared imaging 
system. Protein bands were quantitatively 
evaluated by Quantity One® analysis software. The 
ratio to confidence reference items was calculated. 

Statistical Analysis 

All data were expressed as mean ± SD. The 
significance of differences among three or more 
groups was performed using One-way ANOVA 
followed by Bonferroni’s post hoc test (SPSS 15.0 
for Windows, SPSS inc., USA). P < 0.05 was 
considered statistically significant. 

Results 

DMY attenuated HG-induced PC12 cell damage 

To investigate protective effect of DMY in high 
glucose-induced neural cell damage model, PC12 
cells were pretreated with DMY with different 
concentrations of 10, 20, 40 μΜ and exposed to 
high glucose with concentrations of 100 mM for 48 
h. Then cell viability was detected by MTT 
detection assay. HG induced cell damage 
significantly compared to the control group. DMY 
with concentrations of 10, 20, 40 μΜ can increase 
cell survival significantly as compared to HG group 
(Fig.1, P < 0.01). 

DMY decreased HG-induced caspase-3 expression 
in PC12 cells 

Apoptosis related protein caspase 3 was detected 
by Western blotting and protective effect of DMY 
on caspase-3 expression was evaluated. As shown 
in Fig.2, compared to control group, cleaved 
caspase-3 protein expression increased 
significantly. 20 μM of DMY can significantly 
reduced caspase-3 expression in PC12 cells 
compared to HG group (Fig.2A and 2B, P < 0.05).  

Effect of DMY on HG-induced intracellular ROS 
production and AMPK activation 

Many studies have reported that ROS contributed 
to HG-induced PC12 cell injury. Here we struggled 
to demonstrate whether DMY would affect the 
elevated level of ROS and related mechanisms in 
HG-treated PC12 cells. Our results showed that 
DMY significantly reduced HG-induced ROS 
production in PC12 cells. Also we found DMY can 
recover HG-induced inhibition of AMPK 
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phosphonylation (Fig.2, P < 0.05). As compared 
with HG group, AMPK agonist AICAR 10 nM can 
significantly reduced HG-induced ROS level in PC12 
cells (Fig.3, P < 0.01). 

 

Fig.1: Effect of DMY in PC12 cells after HG 
exposure. Cell viability was evaluated by MTT 
detection assay. PC12 cells are pretreated with 
DMY for 1 h and then exposed to HG 100 mM for 
48 h. Data are expressed as mean ± SD. **P < 0.01 
compared to control group. ##P < 0.01, #P < 0.05 
compared to HG group. 

 

Fig.2: Effect of DMY on caspase-3 expression and 
AMPK phosphonylation in PC12 cells. PC12 cells 
are pretreated with DMY 20 μM for 1 h and then 
exposed to HG for 48 h (A). The density of caspase 
3 and p-AMPK was determined by Western blotting 
and the ratio to GAPDH was calculated. *P < 0.05 

compared to control group, #P < 0.05 compared to 
HG group. 

 

Fig.3: Effect of DMY and AMPK agonist on ROS 
production in PC12 cells. PC12 cells are pretreated 
with DMY 20 μM or AMPK agonist AICAR 10 nM for 
1 h and then exposed to HG for 48 h. Intracellular 
ROS generation in PC12 cells was determined using 
a detection assay. Values are expressed as ratio of 
control group and reported as mean ± SD. **P < 
0.01 compared to control group. ##P < 0.01 
compared to HG group. 

Discussion 

In the present study, we reported that DMY 
pretreatment protected against HG-induced cell 
damage, and reduced the expression of caspase-3 
and phosphorylated AMPK. DMY reduced ROS 
production possibly through AMPK pathway.  

The flavonoids are a large a large class of powerful 
antioxidative compounds that are mainly found in 
fruits, tea and other plant-derived materials[11]. 
Many studies have demonstrated the effects of 
flavonoids and their metabolites on cancer, 
diabetes mellitus and Alzheimer’s disease[12]. 
Dihydromyricetin has been showed a potential 
neuroprotective effect against oxidative stress-
induced and amyloid-induced neuronal cell 
injury[13]. As a flavonoid compound, isolated from 
traditional southern Chinese herb Ampelopsis 
grossedentata, DMY possessed neuroprotective 
effects against oxidative stress in 
neurodegenerative diseases[14]. It was reported 
that DMY significantly reduced oxidative stress and 
inhibited microglial inflammation in transgenic 
mouse model of AD[15]. Moreover, DMY also 
decreased oxidative stress induced cell injury in a 
concentration-dependent manner[16]. Consistent 
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with previous studies, our results showed DMY 
protected PC12 neural cells against HG-induced cell 
cytotoxicity. 

It’s well known that imbalance of Bax/Bcl-2 leads to 
the release of cytochrome C, caspase-3 activation 
and subsequent cell apoptosis in neural cells[17]. 
Caspase-3 plays a pivotal role as a final stage of 
apoptosis[18]. It was reported that increased 
caspase-3 prompted apoptosis in PC12 cells[19]. 
Thus, our study found that DMY pretreatment is 
able to suppress the activation of capase-3 in PC12 
cells. 

Previous studies showed that hyperglycemia-
induced intracellular ROS production and inhibition 
of AMPK phosphonylation[20]. We observed that the 
influences of DMY on inhibition of ROS production 
and activation of AMPK phosphonylation. Since 
AMPK signaling pathway is a crucial pathway 
involved in cell apoptosis. AMPK agonist also have 
similar protective effect with DMY treatment in 
HG-induced ROS level. It indicated that DMY might 
reduce cell damage and ROS production through 
AMPK pathway. Our study supported the AMPK 
signaling pathway involved in the HG-induced PC12 
cell apoptosis and cytotoxicity. 

In conclusion, our data highlight the activation of 
AMPK signaling pathway as a potential mechanism 
by which DMY protects PC12 cells from HG-induced 
ROS production and cell apoptosis. These results 
may suggest that DMY therapy could be employed 
as a promising agent in prevention therapy for 
diabetic neuropathy. 
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