

Journal of Biomedical and Pharmaceutical Research

Available Online at www.jbpr.in

CODEN: - JBPRAU (Source: - American Chemical Society)

Volume 5, Issue 1: January-February: 2016, 76-88

Research Article

Biodiversity, enzymatic and antimicrobial activities of bacterial endophytes in selected local medicinal plants

MushafauAkinsanya^{a, b}, JooKhengGoh^a, Siew Ping Lim^a, Adeline Su Yien Ting^a*

^aSchool of Science, Monash University Malaysia, 46150 Bandar Sunway, Selangor, Malaysia.

^bDepartment of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Lagos State University, PMB 21266

Ikeja, Lagos, Nigeria.

Received 28February 2016; Accepted 14March 2016

ABSTRACT

Endophytic bacteria existing in healthy medicinal plants of *Ocimumbasilicum, Cymbopogoncitratus, Morindacitrifolia* and *Triticumaestivum* were isolated to evaluate their diversity, enzyme production and antimicrobial potentials of their bioactive compounds. The molecular characterization of their 16S rRNA gene indicated 41 isolates to have 98-100% similarity with the respective organisms of 14 genera and 32 species. The dominant genera are *Pseudomonas* and *Bacillus*. Antimicrobial activities of the ethylacetateextracts of their metabolites revealed 20 isolates (48%) that inhibit at least two of the nine pathogens tested with inhibition zone from 7.3 to 15.0 ±0.5 mm. Isolates-*Bacillus mycoides* OBR-1, *Acinetobacterbaumannii* LGL-1, *Sphingomonasyabuuchiae*TAR-1 inhibited at least five pathogens and they are considered to be the most active with zone of inhibition from 7.7 to 15.0 ±0.5 mm. In addition, eight isolates were found to produce all the four enzymes-cellulase, xylanase, amylase and pectinase with *B. cereus* and *B. weihenstenphenensis* to be the most active producers of the enzymes. Also, *C. citratus*was found to have been mostly colonized by *Bacilli* species with high potentials to produce cellulase, amylase, pectinase and xylanase enzymes. Thus, this study revealed bacterial endophytes with ability of producing antimicrobial substances of pharmacological importance.

Key words: Bioactive compounds; 16S rRNA gene; endophytes

INTRODUCTION

Medicinal plants are natural sources for valuable bioactive compounds, including derivatives. In recent years, researchers have explored not only the plants but, microorganisms harboured by these plants called endophytes. Endophytes are found in the interstitial space of plants without causing any symptoms or apparent harm to the host. Recent studies have shown endophytic bacteria to play an important role in resistance to diseases, promote growth and mediate some beneficial role between the endophyte and its host (1, 2). Endophytic bacteria produce novel metabolites exhibiting a variety of biological activities against different pathogens (3). As a result, endophytes have become increasingly popular for isolation and characterization of several bioactive compounds (1, 4). Recently, anticancer enzyme, L-asparaginase and taxol-anticancer drug were isolated from endophytes(5-7). (8)Preveena and Bhore identified several bacterial endophytes with antibacterial activities from the medicinal plant Tridaxprocumbens Linn., which has wound healing properties. Hence, a number of researchers have suggested the hypothesis that endophyte-host plant association, particularly with medicinal plants, may have influenced the ability of endophytes to produce similar beneficial compounds as the host plant. Also, questions such as "What are the possible associations between microbiota and plants?" and "What are they doing there and how do they respond to environmental changes and interact with each other?" have often been proposed and attempts to provide answers to these questions are on-going(9).

Consequently, many plants have been explored for their different endophyte communities. It has been estimated that there is approximately 300,000 plant species on earth, and each individual plant could potentially host a large number of endophytes(9). The diversity of endophytes is evident as proposed by Loh, Tan (10)in which 71 different endophytic bacteria were isolated from 1055 plants species. Lilley, Fry (11) further isolated 23 different genera of endophytic isolates from sugar beet plant. In our separate study, we discovered twenty-nine culturableendophytic bacteria species from Aloe vera plant (12). To further validate the hypothesis, four local medicinal plants (Ocimumbasilicum, Cymbopogoncitratus, Morindacitrifolia Triticumaestivum) were selected for endophyte profiling and to establish their valuable properties.

Ocimumbasilicum, commonly known as basil, originates from India is used widely in Indonesian cuisines as a flavouring. In vitro studies have established that lipid compounds in basil have potent antioxidant, antiviral, well antimicrobial properties. In India, it is traditionally used supplementary treatment stress, asthma and diabeteswith recent studies revealing its essential oil showing antifungal and insect-repelling properties Cymbopogoncitratus (Lemon grass), is another medicinal plant with known medicinal properties. In vitro studies using leaf extracts showed cytoprotective, antioxidant, anti-inflammatory as well as antifungal properties (14). The essential oil from this plant, citronellol, has antihypertensive properties and is known to be active against dermatophytes such as Trichophytonmentagrophytes, T. rubrum, Epidermophytonfloccosumand Microsporumgypseum(15). The third medicinal plant selected for this study, Morindacitrifolia L., belonged to the family Rubiaceaea, and is known locally as 'mengkudu' or 'Noni'. M. citrifoliahas wide range of uses in traditional medicine, having been used as a treatment for dysentery, heartburn, high blood pressure, cancer, as well as for respiratory infections and tuberculosis (16). Also, T. aestivum (wheatgrass) extracthas been found to possess superoxide scavenging and ferric reducing power(17) and ability to inhibit oxidative DNA damage has also been demonstrated by Falcioni (18). This study reports our findings of the population structure of endophytic bacteria in O. basilicum, C. citratus, M. citrifolia and T. aestivum, and the evaluation of their enzymatic and antimicrobial potential of pharmacological importance.

MATERIALS AND METHODS

Isolation of endophytic bacteria:

The medicinal plants (asymptomatic plants) were collected from Sungai Buloh horticulture field area (3.235283 N, 101.568342 E), Selangor, Malaysia. Five plants each were dug neatly from different points and transferred into sterile biosafety bags and brought to the Microbiology Laboratory for immediate analysis. The surface tissue sterilization was performed as stated earlier in our previous studies (12). The disinfected leaves, stems and roots were rinsed three times in sterile distilled water and drained. The tissues were cut longitudinally with a sterile scalpel and laid, with the exposed inner surface facing downwards, on Nutrient agar. The inoculated plates were incubated for 36-48 h at 30 ± 2 °C and pure cultures were established. In addition, the uncut surface-disinfected tissues, and the last rinsing water were also inoculated onto separate Nutrient agar plates. This was to validate the effectiveness of the surface sterilization procedure (control) as bacteria growth in the control agar plates within 24 h of incubation (30± 2 °C) indicated ineffective surface-sterilization.

Molecular characterization and biodiversity:

The genomic DNA of the endophytic bacteria was extracted using methods described by (19). This was extracted using the QIAamp DNA Mini Kit by QIAGEN. The 16S rRNA gene was amplified using the [8F: forward primer AGAGTTTGATCCTGGCTCAG-3'] and reverse primer [1492R: 5'-GGTTACCTTGTTACGACTT-3'] (20). The PCR conditions were performed as stated in previous study (12). The PCR products were purified using NucleoSpin Gel and PCR Clean-up kit by Macherey-Nagel. The 16S rRNA sequencing was performed by First-BASE Laboratories Pte. Ltd. The isolates were identified based on hits analysis from mega blast (highly similar sequences) output of the BLASTN program at (http://ncbi.nlm. nih.gov). The DNA sequences were deposited at NCBI and accession numbers obtained as shown in Table 1. To build the phylogenetic tree, sequences of the 16S rRNA gene were aligned using the multiple sequence alignment program (MUSCLE) (21) and the phylogenetic analysis performed using Maximum Likelihood methods (MEGA6) (22)with Bootstrap analysis performed using data resampled 1,000 times.

Determination of enzymatic production:

The agar diffusion assay was performed to detect extracellular cellulase, xylanase, amylase and pectinase production of the endophytic bacteria (23). To assay for cellulase production, the isolates were grown on cellulase activity indicator medium [Nutrient Agar medium containing, 0.5 % (w/v) carboxyl methylcellulose, and 1.5 % agar (w/v)]. Spot-dot inoculation was performed for the detection of activity. Plates were incubation at 30 ± 2 °C for 18-24 h. To visualize the halos formed due to cellulase, the plates were flooded with 0.5 % Congo red solution for 30 min, rinsed with water and then rinsed twice with 1M NaCl. Colonies positive for extracellular cellulase activity were surrounded by a yellow halo against a red background. To detect xylanase production, the isolates were grown on xylanase activity indicator medium [Nutrient Agar medium containing, 0.5 % (w/v) oat spelt xylan and 1.5 % agar (w/v)]. Plates were incubated at 30 ± 2 °C for 18-24 h.

To visualize the halos formed due to xylanase activity, the plates were flooded with 0.5 % Congo red solution for 30 min, rinsed with water and then rinsed twice with 1M NaCl. Colonies positive for extracellular xylanase activity were surrounded by a yellow halo against a red background. To detect amylase production, the isolates were grown on amylase activity indicator medium [Nutrient Agar medium containing, 0.5 % (w/v) starch powder and 1.5 % agar (w/v)]. Plates were incubated at 30 ± 2 °C for 18-24 h, a clear zone surrounded by black coloration indicated the activity of amylase when rinsed with 0.1M lodine solution. To detect pectinase production, cultures were grown on pectinase indicator medium [Nutrient Agar medium containing 0.7 % (w/v) sodium polypectate and 1.5 % agar (w/v)]. Plates were incubated at 30 ± 2 °C for 18-24 h. To visualize the halos formed due to pectinase activity, the plates were flooded with 10 % of a saturated solution of copper acetate (Cu (C₂H₅O₂) for 30 min. After excess stain was washed off, a halo against a blue background became visible.

Determination of antimicrobial activity:

The metabolites of the bacterial endophytes were extracted with ethyl acetate solvent as described earlier (12), and the antimicrobial activities of the extracts were tested against bacteria and yeast pathogenic strains, which include-Pseudomonas aeruginosa ATCC 10145, Staphylococcus aureus ATCC 33591, Bacillus cereus ATCC 14579, Salmonella TyphimuriumATCC 14028, Proteus vulgaris-ATCC 8427, Klebsiellapneumoniae ATCC 10031, Escherichia coli ATCC 25922, Streptococcus pyogenes ATCC 12384 and Candida albicans ATCC 90028 using agar disc diffusion method (12, 24). All pathogens were obtained from the Microbiology Laboratory of Monash University Malaysia. The bacteria pathogens were pre-cultured overnight in Mueller Hinton broth at 35 ± 2 °C, and 5 ml of the culture were centrifuged at $6,000 \times q$ for 5 min. The pellets were re-suspended in sterile distilled water and the cell density was subsequently adjusted to 0.5 McFarland standard. The inoculum suspension was then seeded on the plate of Mueller Hinton agar for antimicrobial assay.

The ethyl acetate crude extracts (20 mg mL⁻¹) of the endophytic bacteria were impregnated onto sterile discs and placed on seeded agar plates. The plates were incubated for 48 h at 35 ± 2 °C and the annular zone of inhibition was measured. The performed experiment was in triplicates. Chloramphenicol $(30\mu g)$ and Gentamicin (10µg)standard antimicrobial discs were used as positive control.

Statistical analysis:

One-way ANOVA was used to analyse all data obtained. The analysis was carried out using the Statistical Package for Social Science (SPSS) version 20 and means were compared using Tukey'sStudentized Range Test (HSD $_{(0.05)}$). Differences were considered statistically significant at p < 0.05.

RESULTS

Diversity of endophytic bacteria:

The results of microbial diversity analysis revealed mixed composition of the endophytic communities from the roots, stems and leaves of *O. basilicum, C. citratus, M. citrifolia* and *T. aestivum.* Eight endophytic bacteria were isolated from *O.*

basilicum belonging to four genera and eight species; 16 isolates from *C. citratus* (five genera of 14 species); nine isolates from *M. citrifolia* (six genera of eight species) and eight isolates from *T. aestivum* (seven genera of eight species) (Table 1). The relative abundance of species isolated from each tissue can be depicted as seen in Figure 1, with *C. citratus* having the highest *Firmicutes* (*Bacilli* species) followed by *Proteobacteria* from both the stem and leaf of *M. citrifolia* and *C. citratus* respectively. The phylogenetic tree revealed the relatedness of the species from each tissue of the respective plants (Figure 2-5).

Antimicrobial activity:

The antimicrobial assay revealed that of the 41 isolates tested, 20 were positive for antimicrobial activity against at least two of the pathogens tested (Table 2). Isolates with strong antimicrobial activities were mostly isolated from *C. citratus*, with six of the 16 isolates indicating antimicrobial activities towards two to four pathogens tested, and inhibition zones from 7.3 to 15.0 \pm 0.5 mm. Three of the isolates- *Bacillus mycoides* OBR-1,

Acinetobacterbaumannii LGL-1 and Shingomonasyabuuchiae TAR-1 inhibited at least five pathogens and were considered as the most active with zones of inhibition from 7.7 to 15.0 \pm 0.5 mm (Table 2).

Production of valuable enzymes:

The production of the enzymes (cellulase, xylanase, amylase and pectinase) by endophytic bacteria were investigated. Of the 41 endophytic bacteria isolates screened, eight isolates produce all the four enzymes assayed (Table 3). Three of these isolates each, were from both C. citratus (LGR-10, LGR-3 and LGR-1) and T. aestivum (TAR-5, TAL-2 and TAL-3), and one isolate each from M. citrifolia-(MCS-1) and O. basilicum-(OBS-1). Six of these isolates belonging to the genus, Bacillus. However, В. weihenstenphenensis TAR-5 and B. cereus LGR-3 produce the most active enzymes for all the tested enzyme with annular halo zone from 4 to 6 mm (Table 3). More also, 27 isolates showed activities for either cellulase, xylanase, amylase or pectinase, while four isolates do not produce any of the enzyme tested.

Table 1: Similarity values (identity %) based on 16S rDNA sequences obtained to identify endophytic bacteria from *Ocimumbasilicum, Cymbopogoncitratus, Morindacitrifolia* and *Triticumaestivum* plants. The accession numbers for the isolates were assigned by NCBI.

Isolates	Nearest relatives ^a	Accession no	Query cover %	Identity %
OBS-1	Bacillus thuringiensis	KT253971	99	99
OBL-1	Pseudomonas parafulva	KT253972	99	100
OBR-1	Bacillus mycoides	KT253973	99	100
OBR-2	Hydrogenophagadefluvii	KT253974	98	99
OBR-3	Pseudomonas monteilii	KT253975	99	100
OBS-2	Pseudomonas putida	KT253976	99	99
OBS-3	Pseudomonas fulva	KT253977	99	99
OBS-4	Pantoeavagans	KT253978	99	100
LGL-1	Acinetobacterbaumannii	KM401858	100	100
LGL-2	Citrobacterfarmeri	KM401859	100	98
LGL-3	Pseudomonas plecoglossicida	KM401860	100	99
LGL-4	Enterobactercancerogenus	KM401861	100	99
LGL-5	Pseudomonas monteilii	KM401862	100	99
LGS-1	Bacillus aerophilus	KM401863	99	99
LGR-1	Bacillus thuringiensis	KM401864	99	98
LGR-2	Bacillus anthracis	KM401865	99	99
LGR-3	Bacillus cereus	KM401866	100	99
LGR-4	Bacillus bataviensis	KM401867	100	99
LGR-5	Bacillus niacini	KM401868	100	99
LGR-6	Bacillus stratosphenicus	KM401869	99	99
LGR-7	Enterobacter cloacae	KM401870	99	98
LGR-8	Bacillus oleronius	KM401871	99	98
LGR-9	Enterobacter cloacae	KM401872	99	98
LGR-10	Bacillus stratosphenicus	KM401873	98	99
MCR-4	Pseudomonas knackmussii	KT253979	99	99
MCS-1	Enterobacterasburiae	KT253980	100	99
MCS-2	Pectobacteriumcypripedii	KT253981	100	99
MCS-3	Stenotrophomonasmaltophilia	KT253982	100	99
MCS-4	Pseudomonas denitrificans	KT253983	99	99
MCS-6	Bacillus anthracis	KT253985	98	99
MCS-7	Erwiniabillingiae	KT253986	100	98
MCL-1	Enterobacterasburiae	KT253987	100	99
MCL-3	Pantoeavagan	KT253988	100	99
TAL-1	Delftiatsuruhatensis	KJ780828	99	99
TAL-2	sphingobacteriumcladoniae	KJ780824	100	99
TAL-3	Klebsiellavariicola	KJ780825	99	99
TAL-5	Pseudomonas putida	KJ780826	99	99
TAL-6	Pseudomonas entomophila	KJ780827	100	99
TAR-1	Sphingomonasyabuuchiae	KJ780829	99	99
TAR-4	Enterobacterasburiae	KJ780823	99	99
TAR-5	Bacillus weihenstenphenensis	KJ780830	100	99

^aClosest relative species in the 16S rRNA gene sequences database. OBR, OBS and OBL; LGR, LGS and LGL; MCR, MCS and MCL; TAR and TAL represent isolates from the root, stem and leaf of *O. basilicum*, *C. citratus*, *M. citrifolia* and *T. aestivum*respectively.

Mushafau Akinsanyaet. Al., Journal of Biomedical and Pharmaceutical Research

Table 2: Antimicrobial activities of endophytic bacteria from O. basilicum, C. citratus, M. citrifolia and T. aestivum plants.

Isolates	P. aeruginosa	S. Typhimurium	P. vulgaris	K. pneumoniae	E. coli	S. aureus	S. pyogenes	B. cereus	C. albicans
Annular zone of Inhibition (mm)									
OBR-1	9.7±0.5 ^a	-	12.0±0.5°	12.3±0.5°	11.0±0.5 ^b	-	-	8.5±0.5 ^a	9.7±0.5 ^{bc}
OBR-3	-	-	-	-	8.0±0.5 ^a	-	-	-	9.0±0.5 ^b
OBS-1	-	-	-	-	15.0±0.5 ^d	-	-	11.0±0.5°	12.0±0.9 ^d
OBS-3	-	-	-	-	-	-	-	11.0±0.5°	8.7±0.5 ^{ab}
LGL-1	-	-	-	7.7±0.5 ^a	10±0.5 ^{ab}	8.0±0.5 ^a	-	12.0±0.5 ^d	7.7±0.5 ^a
LGL-2	-	9.3±0.5 ^a	-	-	-	12.0±0.5 ^b	-	12.5±0.8 ^d	11.0±0.5°
LGL-3	-	-	-	-	-	-	11.0±0.5°	12.0±0.5 ^d	9.0 ± 0.5^{b}
LGL-4	-	-	-	13.0±0.5°	-	-	8.7±0.5 ^b	12.3±0.5 ^d	13.7±0.5 ^e
LGS-1	-	-	-	-	14.0±0.5°	-	-	11.0±0.5°	-
LGR-5	-	-	7.3±0.5 ^a	-	-	8.3±0.5 ^a	7.3±0.5 ^a	-	$11\pm0.5^{\rm c}$
MCS-1	-	9.7 ±0.5 ^a	-	10.7 ± 0.5^{b}	-	-	-	12.0±0.5 ^d	-
MCS-2	-	-	11±0.5 ^b	12.0±0.5°	-	-	11.0±0.5°	11.3±0.5°	-
MCS-4	-	-	12.0±0.5°	9.7±0.5 ^b	-	-	-	11.0±0.5°	-
MCL-1	9.0 ± 0.5^{a}	-	-	-	-	-	-	9.7±0.5 ^b	-
MCR-4	-	-	-	-	10±0.5 ^{ab}	-	7.7±0.5 ^a	8.0±0.5 ^a	-
TAR-1	-	12 ±0.5 ^b	7.0 ± 0.5^{a}	8.7 ± 0.6^{ab}	12 ±0.5 ^b	15 ±0.5d	10±0.5 ^{bc}	10±0.8 ^{bc}	10±0.5 ^{bc}
TAR-4	-	-	-	11 ±0.5 ^{bc}	7.3±0.6 ^a	8.0 ± 0.5^{a}	-	9.0 ± 0.5^{b}	-
TAL-1	-	-	-	9.7 ± 0.57^{b}	11 ±0.5 ^b	11 ± 0.5^{b}	-	10±0.5 ^{bc}	-
TAL-2	-	-	7.7 ± 0.6^{a}	-	-	7.7 ± 0.6^{a}	-	-	-
TAL-5	-	-	7.0 ± 0.5^{a}	-	-	-	9.0 ± 0.5^{b}	9.0 ± 0.5^{b}	9.0 ± 0.5^{b}
Chlora mpheni col (30µg)	-	28.0±0.5 ^d	24±0.5 ^d	30.0±0.5 ^e	26.0±0.5 ^f	26.0±0.5 ^d	26.0±0.5 ^d	26.0±0.5 ^f	16.0±0.5 ^f
Gentam icin (10µg)	18.0±0.5 ^b	20.0±0.5°	26.0±0.5°	22.0±0.5 ^d	20.0±0.5 ^e	20.0±0.5°	30.0±0.5 ^e	23.0±0.5 ^e	28.0±0.5 ^g

© 2016 All Rights Reserved.

CODEN (USA): JBPRAU

Data are mean ±SD values. One-way ANOVA was used to analyse data using Tukey's Studentized range test. Values are statistically significant at p<0.05. OBR, LGR, LGS, LGL, MCR, MCS, MCL, TAR and TAL represent isolates from the root, stem and leaf of *O. basilicum*, *C. citratus*, *M. citrifolia* and *T. aestivum*, respectively. (-) represent no inhibition. (a-g) represent statistical significant (Tukey's key). However, the metabolites of 21 isolates; OBR-2, OBS-2, OBS-4, OBL-1, LGL-5, LGR-1, LGR-2, LGR-3, LGR-4, LGR-6, LGR-7, LGR-8, LGR-9, LGR-10, MCS-3, MCS-6, MCS-7, MCL-3, TAR-5, TAL-3 and TAL-6 do not indicate any inhibition.

Table 3: Detection of enzymatic production of endophytic bacteria isolates from *O. basilicum, C. citratus, M. citrifolia* and *T. aestivum* plants.

ISOLATES	CELLULASE	XYLANASE	AMYLASE	PECTINASE
C. citratus				
LGL-1	+	-	+	+++
LGL-2	+	+	-	+
LGL-3	-	-	-	+
LGL-4	+	-	-	-
LGL-5	+	-	-	+
LGR-1	+	+	+	+
LGR-2	++	+	+	=
LGR-3	++	++	+++	+++
LGR-4	+	++	+	=
LGR-5	-	++	-	=
LGR-7	+	+	+	-
LGR-8	+	+	-	-
LGR-10	+	+++	+	+
LGS-1	-	+	+	-
LGS-3	-	-	-	-
M. citrifolia				
MCS-1	+	+	+	+
MCS-2	+	=	=	+
MCS-3	-	=	=	-
MCS-4	+	+	-	=
MCS-6	+	-	+	=
MCS-7	+	-	+	=
MCL-1	+	+	+	-
MCL-3	+	-	+	-
MCR-4	+	+	+	-
O. basilicum				
OBS-1	+	++	++	+
OBS-2	-	-	-	+
OBS-3	-	-	-	+
OBS-4	-	-	-	-
OBR-1	+	+	-	+++
OBR-2	-	-	-	-
OBR-3	+	-	-	+
OBL-1	+	-	-	+
T. aestivum TAR-3	1	1		1
TAR-3	+	+	-	+
TAR-4 TAR-5	+ ++	+ +++	+ +++	-
TAL-1	-	-		+++ +
TAL-1 TAL-2	+		- +	+
TAL-2 TAL-3	++	++ ++	++	++
TAL-5	+	+	-	+
TAL-5 TAL-6				
1 AL-0	+	+	-	-

© 2016 All Rights Reserved. CODEN (USA): JBPRAU

Size of halos formed around bacterial colonies on agar media and symbols; -, +, ++, and +++ indicate no, low (2 mm annular halo zone), weak (4 mm annular halo zone) and strong (6 mm annular halo zone) enzymes activities, respectively. OBR, OBS and OBL; LGR, LGS and LGL; MCR, MCS and MCL; TAR and TAL represent isolates from the root, stem and leaf of *O. basilicum*, *C. citratus*, *M. citrifolia* and *T. aestivum*respectively.

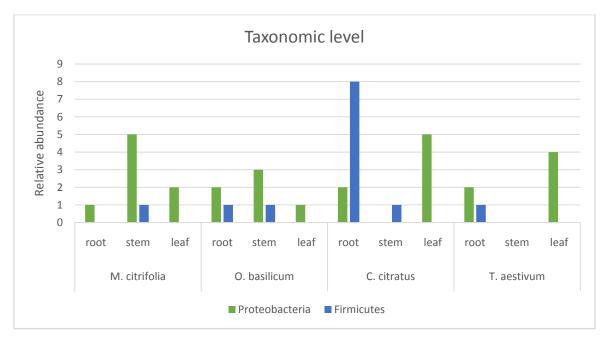


Figure 1: Taxonomic level of isolates from M. citrifolia, O. basilicum, C. citratus and T. aestivum plants.

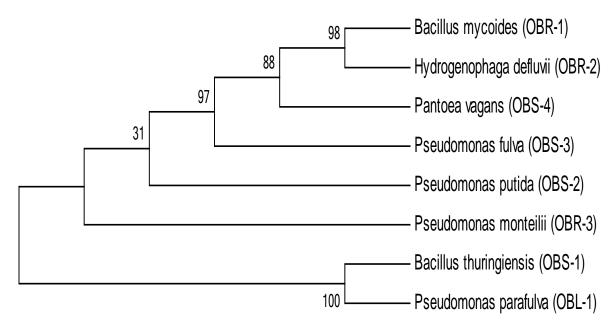


Figure 2: Molecular Phylogenetic analysis of endophytic bacteria from *O. basilicum*. Numbers above each node are confidence levels (%) generated from 1000 bootstrap trees. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model (21). The bootstrap consensus tree inferred from 1000 replicates (36) is taken to represent the evolutionary history of the taxa analyzed (22).

© 2016 All Rights Reserved. CODEN (USA): JBPRAU

83

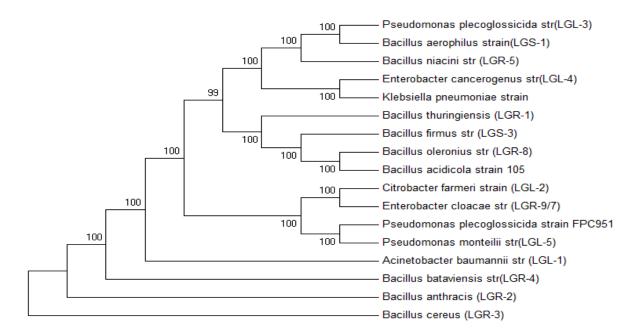


Figure 3: Molecular Phylogenetic analysis of endophytic bacteria from *C. citratus*. Numbers above each node are confidence levels (%) generated from 1000 bootstrap trees. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model (21). The bootstrap consensus tree inferred from 1000 replicates (36) is taken to represent the evolutionary history of the taxa analyzed (22).

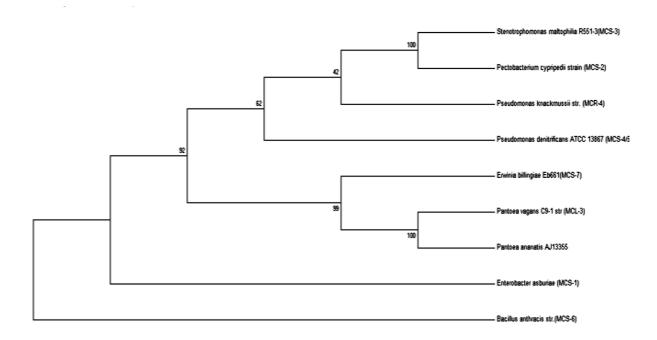


Figure 4: Molecular Phylogenetic analysis of endophytic bacteria from *M. citrifolia*. Numbers above each node are confidence levels (%) generated from 1000 bootstrap trees. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model (21). The bootstrap consensus tree inferred from 1000 replicates (36) is taken to represent the evolutionary history of the taxa analyzed (22).

© 2016 All Rights Reserved. CODEN (USA): JBPRAU

84

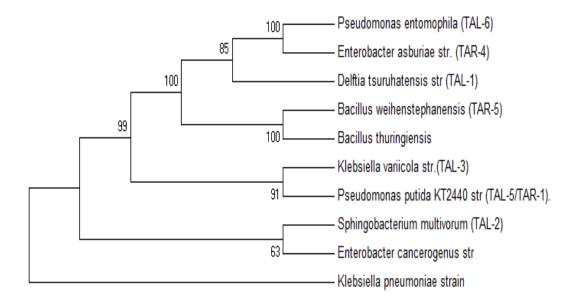


Figure 5: Molecular Phylogenetic analysis of endophytic bacteria from *T. aestivum*. Numbers above each node are confidence levels (%) generated from 1000 bootstrap trees. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura 3-parameter model (21). The bootstrap consensus tree inferred from 1000 replicates (36) is taken to represent the evolutionary history of the taxa analyzed (22).

DISCUSSION

Diversity of endophytic bacteria:

The diversity analyses suggested that all four medicinal plants were colonized predominantly by Pseudomonas sp. and Bacillus sp.as the two genera were present in all plants tissues (Table 1). In our previous studies of some medicinal plants in the same location, similar results were obtained, where we found genus-Pseudomonas, Bacillus and Enterobacter predominating the tissues of the plants (12). The phylogenetic tree equally revealed the evolutionary history of the isolates in each plant and clusters can be seen indicating interactions within them and their hosts (Fig. 2-5). In studies conducted by other researchers, endophytes that were isolated in different plants from different locations are in different numbers. (25)noted Sturz, Christie that endophyticpopulation of bacteria were different in different host plants, they identified 31 bacteria species from 14 different genera which were recovered from within the foliage, roots and nodules of red clover plants. Jalgaonwala, Mohite (26) isolated 78 bacterial endophytes and 140

fungal endophytes from the root and stem tissues of medicinal plants-*Pinusglabra* (Spruce Pine), *Eucalyptus globulus* (Blue Gum) and *Curcurma longa* (Ginger).

However, indicated recent studies have Pseudomonas, Bacilli, Pantoea and Enterobacter as the most common bacterial endophytes in plants (27) and our study have equally confirmed this. In addition, isolated and identified we Hydrogenophagadefluvii, Erwiniabillingiae, Acinetobacterbaumannii and Citrobacterfarmeri as endophytic bacteria and obtained more diverse bacterial endophytes in M. citrifolia stem and high diversity of Bacilli species in C. citratus root.

Antimicrobial activity:

The Gram-positive pathogen (B. cereus) and yeast pathogen (C. albicans) were more susceptible to the antimicrobial metabolites of the endophytic bacteria than the Gram-negative pathogens. B. cereus was inhibited by 17 isolates and C. albicans was inhibited by 11 isolates, with zones of inhibition from B.0 to B.0 to B.0 to B.0 mm and B.0 to B.1 to B.2 mm respectively (Table 2). On the

© 2016 All Rights Reserved. CODEN (USA): JBPRAU

contrary, P. aeruginosa and S. Typhimurium seemed to be more resistant to the metabolites produced by the endophytic bacteria as they were inhibited only by two and three isolates, respectively (Table 2). This agreed with previous studies that showed antibiotics produced by Bacillus spp. to be more effective on Gram-positive bacteria(25, 26). However, we found some isolates active against some Gram-negative bacteria such as E. coli, K. pneumoniae, P. vulgaris, P. aeruginosa and S. Typhimurium. Hence, we suggest that isolates-B. mycoides OBR-1, A. baumannii LGL-1 YabuuchiaeTAR-1 have potential for production of antimicrobial substances that can be of use in the agro-allied and pharmacological industries. Secondly, it can help in the fight against phytopathogens, thus improve crop yield. The bioactive substance produced by these microbes can also be of benefitin fighting fungal disease caused by C. albicans. Therefore, we suggest for further work on isolation and characterization of these bioactive compounds.

Production of valuable enzymes:

Our results demonstrated that some endophytic bacteria from C. citratusandT. aestivumhave the ability to degrade plant polymers especially endophytic bacteria B. stratosphenicusLGR-10, B. cereus LGR-3,A. baumanniiLGL-1, weihenstenphenensis, and Klebsiellavariicolaas they have strong indication for production of cellulase, xylanase and pectinase (Table 3). These enzymes have potential applications in various industries including pulp and paper, biofuel textile, food and agricultural production, industries. For instance, cellulase combined with xylanase, can be used for deinking of different types of paper wastes(28-30). Also, cellulase, xylanase, and pectinase as an enzyme complex, are used as macerating enzymes for extraction and clarification of fruit and vegetable juices to increase the yield of juices in the food industry(31). Bioconversion of lignocellulosic materials into useful and renewable biofuel can be achieve by the use of cellulase.

Previous researchers, have also demonstrated bacterial endophytes producing cell wall degrading enzymes (pectinase, xylanase, cellulase) at apices of root hairs as reported byAl-Mallah, Davey (32), they suggested that the enzymes degrading the cell wall at the apices of root hairs in

Trifoliumrepens L. with cellulase-pectinase mixture enabled nitrogen-fixing nodule formation with Lotus- specific R. loti. In a related work of Verma, Kumar (33)showed the presence of different levels of cellulase and pectinase activities in different isolates suggesting their potential for inter and intracellular colonization. Our work also revealed the enzyme production ability of K. variicola which may require further investigation. Though, K. pneumoniae and K. oxytoca have been found in a variety of plant hosts and are able to fix atmospheric nitrogen into a form that can be used by plants (34, 35).

Conclusively, our findings revealed that the four medicinal plants; C. citratus, M. citrifolia, O. basilicumandT. *aestivum*were predominantly populated by Proteobacteria and Firmicutes such as Pseudomonas, Bacilli, Pantoeaand Enterobacter as summarized in Fig. 1. M. citrifolia and T. *aestivum*showed most diverse endophytes with seven genera and eight species. However, C. citratuswas mostly colonized by Bacilli sp., rich in cellulase, amylase, pectinase and xylanase enzymes production. Even though that the plant was obtained in the same locality with M. citrifolia, O. basilicum and T. aestivum. This outstanding colonization by Bacilli sp. require further investigations. Similarly, the endophytic isolateswere found to metabolites with broad spectral antimicrobial activities, and Gram-positive pathogens were more susceptible than the Gram-negative pathogens. In our study, B. cereus and C. albicans were found to be more susceptible to the metabolites extracted. Hence, isolates such as; B. mycoides OBR-1, A. baumannii LGL-1 and S. Yabuuchiae maybe said have potentials for production of antimicrobial substances for both pharmacological agricultural applications. The characterization of their bioactive compounds may be a lead to novel bioactive compounds. We therefore suggest the characterization of their bioactive compounds for further investigations.

ACKNOWLEDGEMENTS

We wish to acknowledge the assistants provided by MsAmreetaSarjit of Microbiology Teaching Laboratory of Monash University Malaysia for the provision of bacteria pathogens used for this project. This work was supported by scholarship of Higher Degree for Research (HDR) School of Science, Monash University Malaysia and scholarship of Tertiary Education Trust Fund of Federal Republic of Nigeria.

Conflict of interest

The authors report no conflict of interest and are responsible for the content and writing of the manuscript.

REFERENCES

- 1. Cho SJ, Park SR, Kim MK, Lim WJ, Ryu SK, An CL, et al. Endophytic Bacillus sp. isolated from the interior of balloon flower root. Bioscience, biotechnology, and biochemistry. 2002;66(6):1270-5.
- 2. Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canadian journal of microbiology. 2004;50(4):239-49.
- **3.** Strobel GA, Dirkse E, Sears J, Markworth C. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology. 2001;147(11):2943-50.
- **4.** Chen C, Bauske E, Musson G, Rodriguezkabana R, Kloepper J. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological control. 1995;5(1):83-91.
- **5.** Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess W. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology. 1996;142(2):435-40.
- 6. Chow Y, Ting AS. Endophytic L-asparaginaseproducing fungi from plants associated with anticancer properties. Journal of Advanced Research. 2014.
- Shukla D, Shrivastav VK, Jana A, Shrivastav A. Exploration of the potential L-asparaginase producing bacteria from the soil of Gwalior (India). Int J Curr Microbiol Appl Sci. 2014;3:665-72.
- **8.** Preveena J, Bhore SJ. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn. Ancient science of life. 2013;32(3):173.
- **9.** Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews. 2003;67(4):491-502.
- **10.** Loh CY, Tan YY, Rohani R, Weber J-FF, Bhore SJ. Diversity of endophytic bacteria in Malaysian

- plants as revealed by 16S rRNA encoding gene sequence based method of bacterial identification. Journal of Young Pharmacists. 2013;5(3):95-7.
- **11.** Lilley AK, Fry JC, Bailey MJ, Day MJ. Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiology Ecology. 1996;21(3):231-42.
- **12.** Akinsanya MA, Goh JK, Lim SP, Ting A. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera 2. FEMS microbiology letters. 2015.
- **13.** Bozin B, Mimica-Dukic N, Simin N, Anackov G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. Journal of Agricultural and Food Chemistry. 2006;54(5):1822-8.
- **14.** Figueirinha A, Cruz MT, Francisco V, Lopes MC, Batista MT. Anti-inflammatory activity of Cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: contribution of the polyphenols. Journal of Medicinal Food. 2010;13(3):681-90.
- **15.** Wannissorn B, Jarikasem S, Soontorntanasart T. Antifungal activity of lemon grass oil and lemon grass oil cream. Phytotherapy Research. 1996;10(7):551-4.
- 16. Brett JW, Jensen C, Nowicki D, Chen S, Afa KP, Anderson G. Morinda citrifolia (Noni): A literature review and recent advances in Noni research 1. Acta Pharmacologica Sinica. 2002(12).
- 17. Arora DS, Chandra P. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physiochemical conditions. Brazilian Journal of Microbiology. 2010;41(3):765-77.
- **18.** Falcioni G, Fedeli D, Tiano L, Calzuola I, Mancinelli L, Marsili V, et al. Antioxidant activity of wheat sprouts extract in vitro: inhibition of DNA oxidative damage. Journal of food Science. 2002;67(8):2918-22.
- 19. Reinhold-Hurek B, Hurek T. Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Critical Reviews in Plant Sciences. 1998;17(1):29-54.

© 2016 All Rights Reserved.

CODEN (USA): JBPRAU

- **20.** Turner S, PRYER KM, MIAO VP, PALMER JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis1. Journal of Eukaryotic Microbiology. 1999;46(4):327-38.
- 21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution. 2011;28(10):2731-9.
- **22.** Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution. 2013;30(12):2725-9.
- 23. An JM, Kim YK, Lim WJ, Hong SY, An CL, Shin EC, et al. Evaluation of a novel bifunctional xylanase—cellulase constructed by gene fusion. Enzyme and microbial technology. 2005;36(7):989-95.
- **24.** Bauer A, Kirby W, Sherris JC, turck, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology. 1966;45(4):493.
- **25.** Sturz A, Christie B, Matheson B, Nowak J. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils. 1997;25(1):13-9.
- **26.** Jalgaonwala R, Mohite B, Mahajan R. Evaluation endophytes of for their antimicrobial activity from indigenous medicinal plants belonging North region India. Maharashtra International Journal on Pharmaceutical and Biomedical Research. 2010;1(5):136-41.
- **27.** Hallmann J, Berg G, Schulz B. Isolation Procedures for Endophytic Microorganisms. In: Schulz BE, Boyle CC, Sieber T, editors.

- Microbial Root Endophytes: Springer Berlin Heidelberg; 2006. p. 299-319.
- **28.** Kuhad RC, Mehta G, Gupta R, Sharma KK. Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass and Bioenergy. 2010;34(8):1189-94.
- **29.** Kuhad R, Gupta R, Khasa Y. Bioethanol production from lignocellulosic biomass: an overview. Teri Press, New Delhi, India; 2010.
- **30.** Singh S, Dikshit PK, Moholkar VS, Goyal A. Purification and characterization of acidic cellulase from Bacillus amyloliquefaciens SS35 for hydrolyzing Parthenium hysterophorus biomass. Environmental Progress & Sustainable Energy. 2015;34(3):810-8.
- **31.** Sturz A. The role of endophytic bacteria during seed piece decay and potato tuberization. Plant and soil. 1995;175(2):257-63.
- **32.** Al-Mallah MK, Davey MR, Cocking EC. Enzymatic treatment of clover root hairs removes a barrier to Rhizobium-host specificity. Nature biotechnology. 1987;5(12):1319-22.
- **33.** Verma N, Kumar K, Kaur G, Anand S. Lasparaginase: a promising chemotherapeutic agent. Critical reviews in biotechnology. 2007;27(1):45-62.
- **34.** Cakmakci ML, Evans H, Seidler R. Characteristics of nitrogen-fixingKlebsiella oxytoca isolated from wheat roots. Plant and soil. 1981;61(1-2):53-63.
- **35.** Haahtela K, Laakso T, Korhonen TK. Associative nitrogen fixation by Klebsiella spp.: adhesion sites and inoculation effects on grass roots. Applied and environmental microbiology. 1986;52(5):1074-9.
- **36.** Felsenstein J. Phylogenies and the comparative method. American Naturalist. 1985:1

© 2016 All Rights Reserved.

CODEN (USA): JBPRAU