ANTI INFLAMMATORY ACTIVITY OF ZIZIPUS MAURITIANA LAM. IN CARRAGEENAN INDUCED PAW EDEMA IN RATS AND ITS COMPARISON WITH SOME STANDARD FLAVONOIDS.

Bhargava Amit*, Rana A.C.

Research Scholar, B. N. College of Pharmacy, Udaipur, Rajasthan, India

Received 17 June 2014; Accepted 25 June 2014

ABSTRACT
The aim of present investigation is to evaluate Anti-inflammatory activity of hydroalcohol extract of whole plant of Zizipus mauritiana Linn. In carrageenan induced paw edema in rats. Treatment with Zizipus mauritiana hydro alcohol extract at two different dose 200 mg/kg and 400 mg/kg and its comparison with standard drug diclofenac sodium at dose of 12.5 mg/kg and some flavonoids i.e. quercertin, kaempferol and epicatchin each at dose of 100mg/kg after induction of inflammation by carrageenan 1% solution at dose of 10 mg/kg, caused significant produce inflammation in rats hind paw It is furthermore Zizipus mauritiana at dose of 200mg/kg and 400mg/kg shows more significant result than some of standard flavonoids. Thus, whole plant of Zizipus mauritiana Lam. may have potential anti inflammatory activity.

Key words: Zizipus mauritiana, Carrageenan, Flavonoids, Anti-inflammatory.

INTRODUCTION:
Inflammation is complex reaction to injurious agents such as microbes and damaged usually necrotic cells that consist of vascular responses, migration and activation of leukocytes and systemic reactions1. Acute Inflammation is a short term process, usually appearing with in a few minutes or hours and ceasing upon the removal of the injurious stimulus1. It is characterized by five cardinal signs1. Rubor (redness), calor (increased heat), tumor (swelling), dolor (pain) and function laesa (loss of function).

Due to variety of pharmacological actives in the mammalian body, flavonoids are referred as nutraceuticals2. Flavonoids are defined as a food or part of food that provide medical or health benefits, including the prevention and treatment of diseases2. Over 8,000 flavonoids have been identified many of which occurs in fruits, vegetables and beverages. Flavonoids perform many functions for the plant, such as providing taste, smell, colors and protection against microbes and insects2. They have been reported to have antiviral, antiallergic, antidiabetic, antiplatelets, anti-inflammatory, antitumor, hepatoprotective, antiulcer and antioxidant activities3. Due to obscure etiology, short term efficacy and limiting contraindications and side effects of available drugs, the treatment is not satisfactory and thus there is a demand for search of new and safer ones4. Raw material cultivation and processing is environmental friendly.

A large section of world's population relies on traditional remedies to treat a plethora. Medicinal herbs are an indispensable part of traditional medicine practiced all over the world due to low costs, easy access and ancestral experience5. Zizipus mauritiana Lam. belonging to family Gramineae/Poaceae commonly known as doob, durwa or bermuda grass. Leaf, roots and the rhizomes of the plantshave been used in folk medicine of different countries as anti-inflammatory, anticystitis, antihypertensive, antihysteria, antigonorrheal infection, antiviral as well as hypolipidemic, hypoglycaemic agent6,7,8,. Doob grass is valuable herbal medicine and used as first aid for minor injuries10.Farmers traditionally apply crushed leaves to minor wounds as a styptic to stop bleeding 11.

MATERIAL AND METHOD:
Male or female Wistar albino rats-with a body weight between 175 to 225 g are used. The animals are starved overnight. To insure uniform hydration, the rats receive 5 ml of water by stomach tube (controls) or the test drug dissolved or suspended in the same volume. Thirty minutes later, the rats are challenged by a subcutaneous injection of 0.1 ml of 1% solution of carrageenan into the plantar side of the right hind paw12. The paw is marked

*Corresponding author: Bhargava Amit | Email: amitrx_79@yahoo.co.in
with ink at the level of the lateral malleolus and immersed in mercury up to this mark. The paw volume is measured by using plethysmograph immediately after injection, and procedure was repeated at 1, 2, 3, 4, hours after carrageenan injection. Rats were divided into eight groups containing six rats each.

Group I
Rats were given only vehicle (only water)

Group II
Rats were given carrageenan (0.1 ml of 1% mg /kg, bw, p.o.)

Group III
Animal were given carrageenan (0.1 ml of 1% mg /kg, bw, p.o.) single dose plus drug diclofenac (12.5 mg/kg bw, p.o.)

Group IV
Rats were given carrageenan (0.1 ml of 1% mg /kg, bw, p.o.) Plus drug Quercetin (100 mg/ kg/ day, bw, p.o.)

Group V
Rats were given carrageenan (0.1 ml of 1% mg /kg, bw, p.o.) Plus drug kampferol (100 mg/ kg/ day, bw, p.o.)

Group VI
Animal were given carrageenan (0.1 ml of 1% mg /kg, bw, p.o.) Plus drug Epicatchin (100 mg/ kg/ day, bw, p.o.)

Group VII
Rats were given carrageenan (0.1 ml of 1% mg /kg, bw, p.o.) Plus drug Zizipus mauritiana Lam. (200 mg/ kg/ day, bw, p.o.)

Group VIII
Rats were given carrageenan (0.1 ml of 1% mg /kg, bw, p.o.) Plus drug Zizipus mauritiana Lam. (400 mg/ kg/ day, bw, p.o.)

RESULT AND DISCUSSION:
The tested extract of Zizipus mauritiana and flavonoids significantly reduce the increase in hind paw edema induced by carrageenan, with effects starting from 1 h except Zizipus mauritiana-200 start from 2 h and lasting for 4 h. at the end of 4 h Zizipus mauritiana at dose of 200 mg/kg shows 51.72% inhibition and at dose of 400 mg/kg its showed inhibition 57.61% which is higher than standard diclofenac (54.83%) and other tested flavonoids Quercetin showed inhibiton at dose of 100mg/kg was 57.14% which is less than Zizipus mauritiana 4000mg/kg dose effect.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>Dose (mg/kg)</th>
<th>Normal 0 Hr.</th>
<th>1 Hr.</th>
<th>2 Hrs.</th>
<th>3 Hrs.</th>
<th>4 Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal Veh //icle</td>
<td>3.45 ± 0.07</td>
<td>3.46 ± 0.07</td>
<td>3.45 ± 0.07</td>
<td>3.45 ± 0.06</td>
<td>3.45 ± 0.05</td>
<td>3.40 ± 0.05</td>
</tr>
<tr>
<td>II</td>
<td>Only carrageenan</td>
<td>10</td>
<td>3.95 ± 0.06**</td>
<td>4.56 ± 0.08**</td>
<td>5.25 ± 0.07***</td>
<td>5.46 ± 0.06***</td>
<td>5.28 ± 0.06***</td>
</tr>
<tr>
<td>III</td>
<td>Carrageenan + Diclofenac</td>
<td>12.5</td>
<td>3.83 ± 0.04</td>
<td>4.13 ± 0.06**</td>
<td>3.61 ± 0.07**</td>
<td>3.45 ± 0.04**</td>
<td>3.41 ± 0.06** (54.83%)</td>
</tr>
<tr>
<td>IV</td>
<td>Carrageenan + Quercetin</td>
<td>100</td>
<td>3.83 ± 0.06</td>
<td>4.15 ± 0.06*</td>
<td>3.71 ± 0.07**</td>
<td>3.53 ± 0.06**</td>
<td>3.36 ± 0.04** (57.14%)</td>
</tr>
<tr>
<td>V</td>
<td>Carrageenan + Kaempferol</td>
<td>100</td>
<td>3.83 ± 0.08</td>
<td>4.18 ± 0.06*</td>
<td>3.78 ± 0.09**</td>
<td>3.60 ± 0.05**</td>
<td>3.36 ± 0.05** (57.14%)</td>
</tr>
<tr>
<td>VI</td>
<td>Carrageenan + Epicatechin</td>
<td>100</td>
<td>3.76 ± 0.08</td>
<td>4.21 ± 0.13*</td>
<td>3.96 ± 0.08**</td>
<td>3.68 ± 0.06**</td>
<td>3.43 ± 0.06** (53.93%)</td>
</tr>
<tr>
<td>VII</td>
<td>Carrageenan + Zizipus mauritiana</td>
<td>200</td>
<td>3.81 ± 0.07</td>
<td>4.25 ± 0.07**</td>
<td>4.00 ± 0.06**</td>
<td>3.81 ± 0.07**</td>
<td>3.48 ± 0.07** (51.72%)</td>
</tr>
<tr>
<td>VIII</td>
<td>Carrageenan + Zizipus mauritiana</td>
<td>400</td>
<td>3.86 ± 0.07</td>
<td>4.18 ± 0.07*</td>
<td>3.86 ± 0.06**</td>
<td>3.58 ± 0.07**</td>
<td>3.38 ± 0.06** (57.61%)</td>
</tr>
</tbody>
</table>

All values are represented as Mean ± SEM (n=6); values in parentheses are represents percentage of inhibition

P Value: +++ <0.001; ++ <0.01; + <0.05 When compared with control untreated animals.

*** <0.001; ** <0.01; * <0.05 When compared with glucose treated model.
REFERENCES: